Range Addition
Description
Assume you have an array of length n initialized with all 0's and are given k update operations.
Each operation is represented as a triplet: [startIndex, endIndex, inc] which increments each element of subarray A[startIndex ... endIndex] (startIndex and endIndex inclusive) with inc.
Return the modified array after all k operations were executed.
Example:
Given:
length = 5,
updates = [
[1, 3, 2],
[2, 4, 3],
[0, 2, -2]
]
Output:
[-2, 0, 3, 5, 3]
Explanation:
Initial state: [ 0, 0, 0, 0, 0 ]
After applying operation [1, 3, 2]: [ 0, 2, 2, 2, 0 ]
After applying operation [2, 4, 3]: [ 0, 2, 5, 5, 3 ]
After applying operation [0, 2, -2]: [-2, 0, 3, 5, 3 ]
Hint
Thinking of using advanced data structures? You are thinking it too complicated. For each update operation, do you really need to update all elements between i and j? Update only the first and end element is sufficient. The optimal time complexity is O(k + n) and uses O(1) extra space.
Train of Thought
[i,j] 的变化就是一个区间, 只要i变了, 后面的都跟着变, 但是要到j结束 给一个[start, end, val] 设立一个start标记, 表示从它开始的都加上当前的val, 但是如何结束呢, 在end + 1位置设立一个-val, 这样就消除了start的影响. 最后再遍历一遍数组, 求和就可以得到全部变化的结果
Code
public class Solution {
public int[] getModifiedArray(int length, int[][] updates) {
//brute force
// int[] res = new int[length];
// for (int i = 0; i < updates.length;) {
// int m = updates[i][0], n = updates[i][1], val = updates[i][2];
// for (int j = m; j <= n; j++) {
// res[j] += val;
// }
// }
// return res;
int[] res = new int[length];
for (int i = 0; i < updates.length; i++) {
int start = updates[i][0], end = updates[i][1], val = updates[i][2];
res[start] += val;
if (end < length - 1) {
res[end + 1] -= val;
}
}
int sum = 0;
for (int i = 0; i < length; i++) {
sum += res[i];
res[i] = sum;
}
return res;
}
}