Longest Increasing Path in a Matrix

Description

Given an integer matrix, find the length of the longest increasing path.

From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

Example 1:

nums = [ [9,9,4], [6,6,8], [2,1,1] ] Return 4 The longest increasing path is [1, 2, 6, 9].

Example 2:

nums = [ [3,4,5], [3,2,6], [2,2,1] ] Return 4 The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

Hint

Train of Thought

To get max length of increasing sequences:

Do DFS from every cell Compare every 4 direction and skip cells that are out of boundary or smaller Get matrix max from every cell's max Use matrix[x][y] <= matrix[i][j] so we don't need a visited[m][n] array The key is to cache the distance because it's highly possible to revisit a cell

Code

 public static final int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};

  public int longestIncreasingPath(int[][] matrix) {
if(matrix.length == 0) return 0;
int m = matrix.length, n = matrix[0].length;
int[][] cache = new int[m][n];
int max = 1;
for(int i = 0; i < m; i++) {
    for(int j = 0; j < n; j++) {
        int len = dfs(matrix, i, j, m, n, cache);
        max = Math.max(max, len);
    }
}   
return max;
 }

  public int dfs(int[][] matrix, int i, int j, int m, int n, int[][] cache) {
if(cache[i][j] != 0) return cache[i][j];
int max = 1;
for(int[] dir: dirs) {
    int x = i + dir[0], y = j + dir[1];
    if(x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] <= matrix[i][j]) continue;
    int len = 1 + dfs(matrix, x, y, m, n, cache);
    max = Math.max(max, len);
}
cache[i][j] = max;
return max;
}

Complexity

results matching ""

    No results matching ""